Quiz on Group By

Test your knowledge on pandas groupby with this quiz

Refer to this Dataset to solve Quiz

image 2
GroupBy
  

Fill in the blanks by drag and drop operation in right spot

pandas
pd
“Name”
[20, 21, 19, 15, 25, 35, 20]
[‘Tom’, ‘Nick’,’Tom’, ‘John’,’Nick’,’Tom’, ‘John’]
Python


import 
      
as
      
df = pd.DataFrame({'Name':
      
, 'Bill':
      
}) df_grouped = df.groupby(
      
).sum() df_grouped

Output:

	Bill
Name	
John	35
Nick	46
Tom	74
Aggregate
  

Aggregate

“City, Age”
mean


df = pd.DataFrame({'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19], 'City': ['NY', 'NY', 'CH']})
df.groupby([
      
])['Age'].
      
().sum()

Output:

60
Pivot
  

Pivot

Age
Name
Year


df = pd.DataFrame({'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19], 'City': ['NY', 'NY', 'CH'], 'Year': [2020, 2021, 2022]})
df.pivot_table(values="
      
", index="
      
", columns="
      
")

Output:

Name	John	Nick	Tom
Year			
2020	NaN	NaN	20.0
2021	NaN	21.0	NaN
2022	19.0	NaN	NaN
GroupBy Multi
  

Group By Multi Columns

“Name”
“City”


 df = pd.DataFrame({'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 21, 19], 'City': ['NY', 'NY', 'CH'], 'Sales': [100, 200, 300]})
df.groupby([
      
,
      
]).sum()

Output:

		Age	Sales
Name	City		
John	CH	19	300
Nick	NY	21	200
Tom	NY	20	100
Filter Group
  

Filter Group By

Name
mean


df = pd.DataFrame({'Name': ['Tom', 'Nick', 'John'], 'Age': [20, 17, 19]})
df.groupby("
      
").filter(lambda x: x["Age"].
      
() > 18)

Output:

	Name	Age
0	Tom	20
2	John	19

How useful was this post?

Click on a star to rate it!

2 responses to “Quiz on Group By”

  1. somikarps@gmail.com Avatar
    somikarps@gmail.com

    solved the problems

Leave a Reply

Points You Earned

Untitled design 6
0 distinction_points
Untitled design 5
python_points 0
0 Solver points
Instagram
WhatsApp
error: Content is protected !!