Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.
Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.
pip install numpy
pip install numpy
import numpy
import numpy as np
import numpy as np
pi = np.float32(3.16)
print(type(pi))
print(pi)
<class 'numpy.float32'>
3.16
num_arr = np.array(42)
print(type(num_arr))
print(num_arr)
num_arr = np.array([1, 2, 3, 4, 5])
print(num_arr)
print(type(num_arr))
print(num_arr.shape)
print(num_arr.ndim)
[1 2 3 4 5]
<class 'numpy.ndarray'>
(5,)
1
num_arr1=np.array([1, 2, 3, 4, 5])
num_arr2=np.array([6, 7, 8, 9, 10])
TwoD = np.array( [ num_arr1 , num_arr2 ] )
print(TwoD)
print(TwoD.shape)
print(TwoD.ndim)
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
(2, 5)
2
num_arr1=np.array([1, 2, 3])
num_arr2=np.array([4, 5, 6])
num_arr3=np.array([7, 8, 9])
T3D=np.array([
[num_arr1,num_arr2],
[num_arr2,num_arr3],
[num_arr1,num_arr3]
]
)
print(T3D)
print(T3D.shape)
print(T3D.ndim)
[[[1 2 3]
[4 5 6]]
[[4 5 6]
[7 8 9]]
[[1 2 3]
[7 8 9]]]
(3, 2, 3)
3
Furthermore, we will use ndim attribute to determine the number of dimensions.
np.array([[[[1,2,3], [4,5,6], [7,8,9]], [[10,11,12], [13,14,15], [16,17,18]]], [[[19,20,21], [22,23,24], [25,26,27]], [[28,29,30], [31,32,33], [34,35,36]]]])
print(a.ndim)
a
4
array([[[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[10, 11, 12],
[13, 14, 15],
[16, 17, 18]]],
[[[19, 20, 21],
[22, 23, 24],
[25, 26, 27]],
[[28, 29, 30],
[31, 32, 33],
[34, 35, 36]]]])
Attribute shape determines the length of each dimension inside the whole array since we know the 4 dimensions are created in the array.
import numpy as np
e = np.array([[[[4, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]])
e.shape
(2, 2, 3, 3)
By using concatenate, we can combine two arrays along a given axis. In the following examples, we will be showcasing two examples where axis value is set to 0 by default, and we have to set any other value manually.
import numpy as np
arr1 = np.array([1.1, 2.1, 3.1])
arr2 = np.array([1.2, 2.2, 3.2])
arr = np.concatenate((arr1, arr2))
arr
array([1.1, 2.1, 3.1, 1.2, 2.2, 3.2])
import numpy as np
arr1 = np.array([[1.1, 2.1, 3.1],[1.2, 2.2, 3.2],[1.3, 2.3, 3.3]])
arr2 = np.array([[1,2,3]])
arr = np.concatenate((arr1, arr2.T),axis=1)
arr
array([[1.1, 2.1, 3.1, 1. ],
[1.2, 2.2, 3.2, 2. ],
[1.3, 2.3, 3.3, 3. ]])
The Numpy stack allows us to join multiple arrays. And we can also use an axis with this method similar to concatenate.
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=0)
print(arr)
[[ 1 2 3 4]
[ 4 5 6 7]
[ 7 8 9 10]
[11 12 13 14]]
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=1)
print(arr)
[[ 1 4 7 11]
[ 2 5 8 12]
[ 3 6 9 13]
[ 4 7 10 14]]
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=-1)
print(arr)
[[ 1 4 7 11]
[ 2 5 8 12]
[ 3 6 9 13]
[ 4 7 10 14]]
Also, take note of axis 1 and axis-1 output
Depth stack combines multiple arrays depth-wise
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.dstack(( arr1 , arr2 ))
print(arr)
[[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]]
Horizontal stack combines arrays in a horizontal direction along columns. This can be similar to concatenate.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.hstack(( arr1 , arr2 ))
print(arr)
[[1 2 3 4 5 6]
[1 2 3 4 5 6]
[1 2 3 4 5 6]]
Horizontal stack combines arrays in a horizontal direction along columns. And it is obviously similar to axis 0.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.vstack(( arr1 , arr2 ))
print(arr)
[[1 2 3]
[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]
[4 5 6]]
Horizontal stack combines arrays in a horizontal direction along columns. And it is obviously similar to axis 0.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.vstack(( arr1 , arr2 ))
print(arr)
[[1 2 3]
[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]
[4 5 6]]
ANCOVA is an extension of ANOVA (Analysis of Variance) that combines blocks of regression analysis and ANOVA. Which makes it Analysis of Covariance.
What if we learn topics in a desirable way!! What if we learn to write Python codes from gamers data !!
Start using NotebookLM today and embark on a smarter, more efficient learning journey!
This can be a super guide for you to start and excel in your data science career.
This article will introduce important functions in SQL rank, denserank, over, partition.
In SQL you can make queries in number of ways ,though we can break complex codes into small readable and calculated parts.
SQL offers several powerful analytical functions that can provide valuable insights
SQL’s analytic functions allow for complex calculations and deeper data insights
SQL’s window functions are a potent tool that enables you to perform
SQL has a powerful feature called Recursive Common Table Expressions (CTEs), enabling you to work with hierarchical or recursive data. When handling data structures such as organisational hierarchies, bills of materials, family trees, and other similar structures, they can prove extremely valuable. 1. What is a Recursive CTE? 2. Syntax of a Recursive CTE 3.…
Statistical and mathematical functions in SQL
solve these Efficient python code quizzes
This is the second segment of simple to advanced codes
Improve your analytical skills by practicing the following tasks