Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.
Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.
pip install numpy
pip install numpy
import numpy
import numpy as np
import numpy as np
pi = np.float32(3.16)
print(type(pi))
print(pi)
<class 'numpy.float32'>
3.16
num_arr = np.array(42)
print(type(num_arr))
print(num_arr)
num_arr = np.array([1, 2, 3, 4, 5])
print(num_arr)
print(type(num_arr))
print(num_arr.shape)
print(num_arr.ndim)
[1 2 3 4 5]
<class 'numpy.ndarray'>
(5,)
1
num_arr1=np.array([1, 2, 3, 4, 5])
num_arr2=np.array([6, 7, 8, 9, 10])
TwoD = np.array( [ num_arr1 , num_arr2 ] )
print(TwoD)
print(TwoD.shape)
print(TwoD.ndim)
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
(2, 5)
2
num_arr1=np.array([1, 2, 3])
num_arr2=np.array([4, 5, 6])
num_arr3=np.array([7, 8, 9])
T3D=np.array([
[num_arr1,num_arr2],
[num_arr2,num_arr3],
[num_arr1,num_arr3]
]
)
print(T3D)
print(T3D.shape)
print(T3D.ndim)
[[[1 2 3]
[4 5 6]]
[[4 5 6]
[7 8 9]]
[[1 2 3]
[7 8 9]]]
(3, 2, 3)
3
Furthermore, we will use ndim attribute to determine the number of dimensions.
np.array([[[[1,2,3], [4,5,6], [7,8,9]], [[10,11,12], [13,14,15], [16,17,18]]], [[[19,20,21], [22,23,24], [25,26,27]], [[28,29,30], [31,32,33], [34,35,36]]]])
print(a.ndim)
a
4
array([[[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[10, 11, 12],
[13, 14, 15],
[16, 17, 18]]],
[[[19, 20, 21],
[22, 23, 24],
[25, 26, 27]],
[[28, 29, 30],
[31, 32, 33],
[34, 35, 36]]]])
Attribute shape determines the length of each dimension inside the whole array since we know the 4 dimensions are created in the array.
import numpy as np
e = np.array([[[[4, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]])
e.shape
(2, 2, 3, 3)
By using concatenate, we can combine two arrays along a given axis. In the following examples, we will be showcasing two examples where axis value is set to 0 by default, and we have to set any other value manually.
import numpy as np
arr1 = np.array([1.1, 2.1, 3.1])
arr2 = np.array([1.2, 2.2, 3.2])
arr = np.concatenate((arr1, arr2))
arr
array([1.1, 2.1, 3.1, 1.2, 2.2, 3.2])
import numpy as np
arr1 = np.array([[1.1, 2.1, 3.1],[1.2, 2.2, 3.2],[1.3, 2.3, 3.3]])
arr2 = np.array([[1,2,3]])
arr = np.concatenate((arr1, arr2.T),axis=1)
arr
array([[1.1, 2.1, 3.1, 1. ],
[1.2, 2.2, 3.2, 2. ],
[1.3, 2.3, 3.3, 3. ]])
The Numpy stack allows us to join multiple arrays. And we can also use an axis with this method similar to concatenate.
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=0)
print(arr)
[[ 1 2 3 4]
[ 4 5 6 7]
[ 7 8 9 10]
[11 12 13 14]]
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=1)
print(arr)
[[ 1 4 7 11]
[ 2 5 8 12]
[ 3 6 9 13]
[ 4 7 10 14]]
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=-1)
print(arr)
[[ 1 4 7 11]
[ 2 5 8 12]
[ 3 6 9 13]
[ 4 7 10 14]]
Also, take note of axis 1 and axis-1 output
Depth stack combines multiple arrays depth-wise
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.dstack(( arr1 , arr2 ))
print(arr)
[[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]]
Horizontal stack combines arrays in a horizontal direction along columns. This can be similar to concatenate.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.hstack(( arr1 , arr2 ))
print(arr)
[[1 2 3 4 5 6]
[1 2 3 4 5 6]
[1 2 3 4 5 6]]
Horizontal stack combines arrays in a horizontal direction along columns. And it is obviously similar to axis 0.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.vstack(( arr1 , arr2 ))
print(arr)
[[1 2 3]
[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]
[4 5 6]]
Horizontal stack combines arrays in a horizontal direction along columns. And it is obviously similar to axis 0.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.vstack(( arr1 , arr2 ))
print(arr)
[[1 2 3]
[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]
[4 5 6]]
What if we learn topics in a desirable way!! What if we learn to write Python codes from gamers data !!
Start using NotebookLM today and embark on a smarter, more efficient learning journey!
ANCOVA is an extension of ANOVA (Analysis of Variance) that combines blocks of regression analysis and ANOVA. Which makes it Analysis of Covariance.
This can be a super guide for you to start and excel in your data science career.
Stable Diffusion Models: Where Art and AI Collide Artificial Intelligence meets creativity in the fascinating realm of Stable Diffusion Models. These innovative models take text descriptions and bring them to life in the form of detailed and realistic images. Let’s embark on a journey to understand the magic behind Stable Diffusion in a way that’s…
Solve These Questions in Following Challange
Generate AI images as good as DALL-E completely offline.
Are demand forecasting truly predictable? Or are they changing randomly?
Let’s enjoy the highly interesting story of Tech Superstar chronologically.
starting your Python journey from scratch is a fantastic endeavour.
Try learning a topic from basic > if not understood, ask somebody>
A friendly guide what every computer science student should have when exams are coming