For Loop With Tuples

This article covers ‘for’ loops and how they are used with tuples. Even if the tuples are immutable, the accessibility of the tuples is similar to that of the list.

This article covers ‘for’ loops and how they are used with tuples. Even if the tuples are immutable, the accessibility of the tuples is similar to that of the list. Traverse through a tuple with a for loop.

Python
Python
Python
tuples=()
tuples=(1,'user@gmail.com',5.2,'User',True)

for i in tuples:
    print(i)

Output
1
user@gmail.com
5.2
User
True
Python

Use enumerate with tuple to get index and value.

Python
Python
Python
for i,j in enumerate(tuples):
    print(i,j)
Output
0 1
1 user@gmail.com
2 5.2
3 User
4 True
Python

To get this output without enumerating, we have to change codes as follows.

Python
Python
Python
size=len(tuples)
# i will be used as index pointer here,
for i in range(size):
    print(i,tuples[i])
Output
0 1
1 user@gmail.com
2 5.2
3 User
4 True
Python

Nested Tuples

Let’s create a pseudo-dataset within a nested structure, a tuple. If we print it directly, it will not show up in table format.

Python
Python
Python
ntuple=(
    ('id','sal','name','email','married'),
    (1,5.2,'User1','user1@gmail.com',True),
    (2,4.8,'User2','user2@gmail.com',True),
    (3,6.3,'User3','user3@gmail.com',True)
)
print(ntuple)
Output
(('id', 'sal', 'name', 'email', 'married'), (1, 5.2, 'User1', 'user1@gmail.com', True), (2, 4.8, 'User2', 'user2@gmail.com', True), (3, 6.3, 'User3', 'user3@gmail.com', True))
Python

Let’s print the nested tuple in table format.

Python
Python
Python
for i in ntuple:
    for j in i:
        print(j,end=' \t ')
    print()
Output
id 	 sal 	 name 	 email	 	        married 	 
1 	 5.2 	 User1 	 user1@gmail.com 	 True 	 
2 	 4.8 	 User2 	 user2@gmail.com 	 True 	 
3 	 6.3 	 User3 	 user3@gmail.com 	 True 
Python

Tuple Unpacking

We will use the same tuple to demonstrate the tuple unpacking.

Python
Python
Python
ntuple=(
    ('id','sal','name','email','married'),
    (1,5.2,'User1','user1@gmail.com',True),
    (2,4.8,'User2','user2@gmail.com',True),
    (3,6.3,'User3','user3@gmail.com',True)
)
print(ntuple)
Output
(('id', 'sal', 'name', 'email', 'married'), (1, 5.2, 'User1', 'user1@gmail.com', True), (2, 4.8, 'User2', 'user2@gmail.com', True), (3, 6.3, 'User3', 'user3@gmail.com', True))
Python

Let’s try to unpack a tuple without any special method. Let’s use for loop to unpack tuple.

Python
Python
Python
for i in ntuple:
    j,k,l,m,n=i
    print(j,k,l,m,n)
Output
id	sal	name	email	married	
1	5.2	User1	user1@gmail.com	True	
2	4.8	User2	user2@gmail.com	True	
3	6.3	User3	user3@gmail.com	True	
Python
Python
Python
Python
i,*j=ntuple
print(i,j,sep='\n')
Output
('id', 'sal', 'name', 'email', 'married')
[(1, 5.2, 'User1', 'user1@gmail.com', True), (2, 4.8, 'User2', 'user2@gmail.com', True), (3, 6.3, 'User3', 'user3@gmail.com', True)]
Python

This is how a tuple is unpacked without a for loop.

Python
Python
Python
i,j,*k=ntuple
print(i,j,k,sep='\n')
Output
('id', 'sal', 'name', 'email', 'married')
(1, 5.2, 'User1', 'user1@gmail.com', True)
[(2, 4.8, 'User2', 'user2@gmail.com', True), (3, 6.3, 'User3', 'user3@gmail.com', True)]
Python

Practice Your codes here

ntuple=( (‘id’,’sal’,’name’,’email’,’married’), (1,5.2,’User1′,’user1@gmail.com’,True), (2,4.8,’User2′,’user2@gmail.com’,True), (3,6.3,’User3′,’user3@gmail.com’,True) ) print(ntuple) i,j,*k=ntuple print(i,j,k,sep=’\n’)

How useful was this post?

Click on a star to rate it!

  • ANCOVA: Analysis of Covariance with python

    ANCOVA is an extension of ANOVA (Analysis of Variance) that combines blocks of regression analysis and ANOVA. Which makes it Analysis of Covariance.

  • Learn Python The Fun Way

    What if we learn topics in a desirable way!! What if we learn to write Python codes from gamers data !!

  • Meet the most efficient and intelligent AI assistant : NotebookLM

    Start using NotebookLM today and embark on a smarter, more efficient learning journey!

  • Break the ice

    This can be a super guide for you to start and excel in your data science career.

  • ANOVA (Analysis of Variance ) part 1

    A method to find a statistical relationship between two variables in a dataset where one variable is used to group data.

  • Basic plots with Seaborn

    Seaborn library has matplotlib at its core for data point visualizations. This library gives highly statistical informative graphics functionality to Seaborn.

  • Matplotlib in python

    The Matplotlib library helps you create static and dynamic visualisations. Dynamic visualizations that are animated and interactive. This library makes it easy to plot data and create graphs.

  • Plotly with Python and R

    This library is named Plotly after the company of the same name. Plotly provides visualization libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.

  • Numpy Array

    Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.

  • NumPy: Python’s Mathematical Backbone

    Numpy has created a vast ecosystem spanning numerous fields of science.

  • Introduction to Pandas: A Guide

    Pandas is a easy to use data analysis and manipulation tool. Pandas provides functionality for categorical,ordinal, and time series data . Panda provides fast and powerful calculations for data analysis.

  • Pandas Dataframe in brief

    In this tutorial, you will learn How to Access The Data in Various Ways From the dataframe.

  • Exploring the World of Sets in Python

    Understand one of the important data types in Python. Each item in a set is distinct. Sets can store multiple items of various types of data.

  • A Beginner’s Guide to Immutable Tuples

    Tuples are a sequence of Python objects. A tuple is created by separating items with a comma. They are put inside the parenthesis “”(“” , “”)””.

Leave a Reply

Points You Earned

Untitled design 6
0 distinction_points
Untitled design 5
python_points 0
0 Solver points
Instagram
WhatsApp
error: Content is protected !!