Solve These Questions in Following Challange
Solve These Questions in Following Challange
You have a dataset containing the subject marks (physics, chemistry, math, and biology) of students. Each row represents a student, and each column represents the marks in a specific subject.
Student | Physics | Chemistry | Math | Biology |
---|---|---|---|---|
S1 | 80 | 75 | 90 | 85 |
S2 | 70 | 85 | 92 | 78 |
S3 | 88 | 80 | 85 | 90 |
– Create a Python function to calculate the average marks for each subject (physics, chemistry, math, biology) across all students in the dataset.
Create a Python function to calculate the average marks for each subject (physics, chemistry, math, biology) across all students in the dataset.
Write a Python script to find the overall average marks of each student across all subjects.
Write a Python script to find the overall average marks of each student across all subjects.
– Create a summary report that includes the overall average marks, the subject with the best average performance, and the best-performing student. Display this information in a clear and readable format.
Create a summary report that includes the overall average marks, the subject with the best average performance, and the best-performing student. Display this information in a clear and readable format.
Student | Subject | Mark |
S1 | Physics | 80 |
S1 | Chemistry | 75 |
S1 | Math | 90 |
S1 | Biology | 85 |
S2 | Physics | 70 |
S2 | Chemistry | 85 |
S2 | Math | 92 |
S2 | Biology | 78 |
S3 | Physics | 88 |
S3 | Chemistry | 80 |
S3 | Math | 85 |
S3 | Biology | 90 |
This dataset represents the marks of students (S1, S2, S3) in different subjects (Physics, Chemistry, Math, Biology). The ‘Student’ column represents the student IDs, the ‘Subject’ column represents the subjects, and the ‘Mark’ column represents the corresponding marks.
Question: Create a pivot table to display the average marks for each subject across all students.
Question: Generate a pivot table that shows the marks of each student in physics, chemistry, math, and biology.
ANCOVA is an extension of ANOVA (Analysis of Variance) that combines blocks of regression analysis and ANOVA. Which makes it Analysis of Covariance.
What if we learn topics in a desirable way!! What if we learn to write Python codes from gamers data !!
Start using NotebookLM today and embark on a smarter, more efficient learning journey!
This can be a super guide for you to start and excel in your data science career.
Solve the task by completing the SQL script
Learn about LAG function in SQL and solve the quiz.
fill in the blanks to complete the code.
Brush up on your pandas basics knowledge. Drag and drop quizzes.
Improve your analytical skills by practicing the following tasks
Random forest trees combine multiple decision trees to obtain an output. And it is flexible enough to adapt to Classification and Regression.
In measures of dispersion, the standard deviation is one of the prominent tools to calculate the dispersion of the data
Let’s learn to calculate the spread of the data and measure it. with Absolute measures and Relative measures
Interquartile range is the difference between first and last quarters in a series of numbers. A Quartile range means a four-partition series of numbers.
In this article, we will learn how to utilize the functionalities provided by excel and python libraries to calculate IQR,