Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.
Numpy array have functions for matrices ,linear algebra ,Fourier Transform. Numpy arrays provide 50x more speed than a python list.
pip install numpy
pip install numpy
import numpy
import numpy as np
import numpy as np
pi = np.float32(3.16)
print(type(pi))
print(pi)
<class 'numpy.float32'>
3.16
num_arr = np.array(42)
print(type(num_arr))
print(num_arr)
num_arr = np.array([1, 2, 3, 4, 5])
print(num_arr)
print(type(num_arr))
print(num_arr.shape)
print(num_arr.ndim)
[1 2 3 4 5]
<class 'numpy.ndarray'>
(5,)
1
num_arr1=np.array([1, 2, 3, 4, 5])
num_arr2=np.array([6, 7, 8, 9, 10])
TwoD = np.array( [ num_arr1 , num_arr2 ] )
print(TwoD)
print(TwoD.shape)
print(TwoD.ndim)
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
(2, 5)
2
num_arr1=np.array([1, 2, 3])
num_arr2=np.array([4, 5, 6])
num_arr3=np.array([7, 8, 9])
T3D=np.array([
[num_arr1,num_arr2],
[num_arr2,num_arr3],
[num_arr1,num_arr3]
]
)
print(T3D)
print(T3D.shape)
print(T3D.ndim)
[[[1 2 3]
[4 5 6]]
[[4 5 6]
[7 8 9]]
[[1 2 3]
[7 8 9]]]
(3, 2, 3)
3
Furthermore, we will use ndim attribute to determine the number of dimensions.
np.array([[[[1,2,3], [4,5,6], [7,8,9]], [[10,11,12], [13,14,15], [16,17,18]]], [[[19,20,21], [22,23,24], [25,26,27]], [[28,29,30], [31,32,33], [34,35,36]]]])
print(a.ndim)
a
4
array([[[[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9]],
[[10, 11, 12],
[13, 14, 15],
[16, 17, 18]]],
[[[19, 20, 21],
[22, 23, 24],
[25, 26, 27]],
[[28, 29, 30],
[31, 32, 33],
[34, 35, 36]]]])
Attribute shape determines the length of each dimension inside the whole array since we know the 4 dimensions are created in the array.
import numpy as np
e = np.array([[[[4, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]])
e.shape
(2, 2, 3, 3)
By using concatenate, we can combine two arrays along a given axis. In the following examples, we will be showcasing two examples where axis value is set to 0 by default, and we have to set any other value manually.
import numpy as np
arr1 = np.array([1.1, 2.1, 3.1])
arr2 = np.array([1.2, 2.2, 3.2])
arr = np.concatenate((arr1, arr2))
arr
array([1.1, 2.1, 3.1, 1.2, 2.2, 3.2])
import numpy as np
arr1 = np.array([[1.1, 2.1, 3.1],[1.2, 2.2, 3.2],[1.3, 2.3, 3.3]])
arr2 = np.array([[1,2,3]])
arr = np.concatenate((arr1, arr2.T),axis=1)
arr
array([[1.1, 2.1, 3.1, 1. ],
[1.2, 2.2, 3.2, 2. ],
[1.3, 2.3, 3.3, 3. ]])
The Numpy stack allows us to join multiple arrays. And we can also use an axis with this method similar to concatenate.
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=0)
print(arr)
[[ 1 2 3 4]
[ 4 5 6 7]
[ 7 8 9 10]
[11 12 13 14]]
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=1)
print(arr)
[[ 1 4 7 11]
[ 2 5 8 12]
[ 3 6 9 13]
[ 4 7 10 14]]
import numpy as np
arr1 = np.array([1, 2, 3,4])
arr2 = np.array([4, 5, 6,7])
arr3 = np.array([7, 8, 9,10])
arr4 = np.array([10, 11, 12,13])
arr4 = np.array([11, 12, 13,14])
arr = np.stack((arr1, arr2 , arr3 , arr4 ),axis=-1)
print(arr)
[[ 1 4 7 11]
[ 2 5 8 12]
[ 3 6 9 13]
[ 4 7 10 14]]
Also, take note of axis 1 and axis-1 output
Depth stack combines multiple arrays depth-wise
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.dstack(( arr1 , arr2 ))
print(arr)
[[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]
[[1 4]
[2 5]
[3 6]]]
Horizontal stack combines arrays in a horizontal direction along columns. This can be similar to concatenate.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.hstack(( arr1 , arr2 ))
print(arr)
[[1 2 3 4 5 6]
[1 2 3 4 5 6]
[1 2 3 4 5 6]]
Horizontal stack combines arrays in a horizontal direction along columns. And it is obviously similar to axis 0.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.vstack(( arr1 , arr2 ))
print(arr)
[[1 2 3]
[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]
[4 5 6]]
Horizontal stack combines arrays in a horizontal direction along columns. And it is obviously similar to axis 0.
import numpy as np
arr1 = np.array([[1, 2, 3],[1, 2, 3],[1, 2, 3]])
arr2 = np.array([[4, 5, 6],[4, 5, 6],[4, 5, 6]])
arr = np.vstack(( arr1 , arr2 ))
print(arr)
[[1 2 3]
[1 2 3]
[1 2 3]
[4 5 6]
[4 5 6]
[4 5 6]]
ANCOVA is an extension of ANOVA (Analysis of Variance) that combines blocks of regression analysis and ANOVA. Which makes it Analysis of Covariance.
What if we learn topics in a desirable way!! What if we learn to write Python codes from gamers data !!
Start using NotebookLM today and embark on a smarter, more efficient learning journey!
This can be a super guide for you to start and excel in your data science career.
In this following article we will familiarize with dictionary and it’s numerous functionalities that makes it so versatile.
Learn to store bytes and byte-arrays. Learn to convert normal datatypes to byte sequence. The bytes() function in Python returns an immutable bytes sequence.
At its heart, the `print()` function sends data to the standard output, typically the console.
List is one of the four data types in Python. Python allows us to create a heterogeneous collection of items inside a list.
NLP is a branch of AI that concerns with computers(AI) understanding natural languages.
Booleans are most important aspects of programming languages.
Booleans are most important aspects of programming languages.
Sentiment analysis can determine the polarity of sentiments from given sentences. We can classify them into certain ranges positive, neutral, negative
Strings is one of the important fundamental datatypes in python. Interactions of input and output console’s are conveyed using strings.
Read this article further to know where to use stemmers and lemmatization. Lemmatization maybe better than stemmer but is it worth your time.