In this tutorial, you will learn How to Access The Data in Various Ways From the dataframe.
In this tutorial, you will learn How to Access The Data in Various Ways From the dataframe.
Welcome, future data scientists! Today, we’re diving into the heart of data analysis with Python’s Pandas library: accessing data within datasets. This guide is crafted for those of you embarking on your journey into the world of data science and coding. With simple explanations, elegant examples, and a touch of depth, we’ll explore the various ways to access and manipulate data in Pandas. Let’s turn data into insights!
Before we access data, ensure Pandas is installed and imported into your workspace alongside NumPy, as we’ll be using both libraries.
import pandas as pd
import numpy as np
To demonstrate data access, let’s first create a DataFrame. DataFrames are two-dimensional data structures with rows and columns, similar to a spreadsheet.
data = {
'Name': ['Anna', 'Bob', 'Catherine', 'David', 'Emily'],
'Age': [28, 34, 29, 42, 21],
'Occupation': ['Engineer', 'Doctor', 'Data Scientist', 'Artist', 'Lawyer']
}
df = pd.DataFrame(data)
Now, with our DataFrame ready, let’s explore how to access its data.
You can access a DataFrame’s column by using square brackets and the column name as a string. This returns a Pandas Series.
ages = df['Age']
print(ages)
For multiple columns, pass a list of column names. This returns a DataFrame.
subset = df[['Name', 'Occupation']]
print(subset)
Rows can be accessed using the .loc and .iloc methods.
# Access the third row by index
print(df.loc[2])
# Access the first row by position
print(df.iloc[0])
Both .loc and .iloc support slicing to access a range of rows.
# Access the first three rows
print(df.loc[0:2])
# Access the last three rows using iloc
print(df.iloc[-3:])
Pandas shines with its ability to filter data based on conditions.
# Find all data scientists
data_scientists = df[df['Occupation'] == 'Data Scientist']
print(data_scientists)
# Age greater than 30
above_30 = df[df['Age'] > 30]
print(above_30)
Combine row and column access methods to get specific data cells.
# Get the occupation of the third person
occupation = df.loc[2, 'Occupation']
print(occupation)
# Using iloc
occupation_iloc = df.iloc[2, 2]
print(occupation_iloc)
The .query() method allows for more complex filtering using a query string.
# People older than 30 and are data scientists
older_data_scientists = df.query('Age > 30 & Occupation == "Data Scientist"')
print(older_data_scientists)
Indexes are powerful in Pandas for data access and manipulation. You can set a column as an index for easier access.
df.set_index('Name', inplace=True)
print(df.loc['Anna'])
Resetting the index to default is also straightforward.
df.reset_index(inplace=True)
Accessing data within datasets is a foundational skill in data science, and Pandas offers a versatile and powerful toolkit for this task. By mastering the various methods of data access presented in this guide, you’re well on your way to unlocking the full potential of your datasets. Experiment with these techniques, explore the documentation, and remember, practice makes perfect. Happy analysing!
ANCOVA is an extension of ANOVA (Analysis of Variance) that combines blocks of regression analysis and ANOVA. Which makes it Analysis of Covariance.
What if we learn topics in a desirable way!! What if we learn to write Python codes from gamers data !!
Start using NotebookLM today and embark on a smarter, more efficient learning journey!
This can be a super guide for you to start and excel in your data science career.
This article will introduce important functions in SQL rank, denserank, over, partition.
In SQL you can make queries in number of ways ,though we can break complex codes into small readable and calculated parts.
SQL offers several powerful analytical functions that can provide valuable insights
SQL’s analytic functions allow for complex calculations and deeper data insights
SQL’s window functions are a potent tool that enables you to perform
SQL has a powerful feature called Recursive Common Table Expressions (CTEs), enabling you to work with hierarchical or recursive data. When handling data structures such as organisational hierarchies, bills of materials, family trees, and other similar structures, they can prove extremely valuable. 1. What is a Recursive CTE? 2. Syntax of a Recursive CTE 3.…
Statistical and mathematical functions in SQL
solve these Efficient python code quizzes
This is the second segment of simple to advanced codes
Improve your analytical skills by practicing the following tasks